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Abstract 

 

Anode change events introduce significant mass and thermal disturbances to the aluminium 

reduction process. Smelters aim to mitigate these impacts by setting new anodes at a higher 

vertical position to accommodate reduced carbon consumption, ensuring that once the new anodes 

recover their normal current load, their bottom surface aligns with other anodes. However, this 

increment may not be optimally implemented due to varying local cell conditions and work 

practice tolerance. Continuous measurements from an Individual Anode Current Monitoring 

system facilitates the prediction of anode consumption rates and variations in anode-cathode 

distance following anode changes. This paper proposes re-adjusting the vertical position of new 

anodes based on the anode current recovery profile, aiming to minimise unnecessary crane usage. 

Prompt restoration of anode current distribution aids in mitigating process perturbations from 

subsequent anode change events, thereby enhancing cell stability and energy and operational 

efficiency. 

 

Keywords: Anode setting, Individual anode current measurement, Mass and energy balances. 

 

1. Introduction 

 

In the Hall-Héroult process, aluminium is produced by the reduction of alumina and the oxidation 

of carbon anodes. The anodes are consumed continuously and must be replaced manually at the 

end of their service life, typically around 3–4 weeks. At this point, the anodes having diminished 

to no less than a quarter of their original size to prevent the iron stubs from being chemically 

attacked by the corrosive electrolytic bath, which would lead to product contamination [1]. Anode 

changes or “settings” are staggered (see Figure 1) for practicality and to maintain process 

continuity, as these changes significantly disrupts the cell mass and thermal balances.  

 

 
Figure 1. Example sequence of anode pair replacements in a cell.  

 

Consequently, each cell in the pot room undergoes an anode change every few days, making this 

the most common manual operation. Given the regularity of the operation and the disturbance 
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caused, an optimal anode change strategy and its proper execution are critical for maintaining 

high cell efficiency. This includes re-adjustment of the anode vertical position, and consequently 

local ACD, post-change where necessary. 

 

A common strategy to determine if re-adjustment is necessary involves measuring the 

instantaneous current flowing through the anode rod using a hand-held tool to ensure it falls within 

acceptable bands. However, this method assumes a well-operating, homogeneous cell with the 

newly changed anodes being the sole irregularity. In actuality, the re-distribution of anode current 

is not limited to local anode condition, as it could be caused by elsewhere in the cell. This 

assumption is increasingly challenged in modern cells, where the growing global aluminium 

demand has led to capacity increase in existing smelters and the construction of larger cells with 

more anodes, higher line currents, squeezing anode-cathode distance (ACD), and a larger anode-

to-electrolyte volume ratio [2-4]. These factors exacerbate the non-uniformity in alumina 

concentrations and ACDs, among other spatial cell conditions. Consequently, as modern cells 

operate closer to process constraints, non-uniformity in anode current distribution, heat 

generation, and consumption of alumina and anodes are not uncommon. Thus, spot anode current 

measurements provide insufficient information to accurately determine the need for re-adjusting 

the vertical position of anodes previously set. 

 

Continuous measurement and analysis of anode currents have garnered significant interest due to 

their potential in revealing spatial information on cell conditions. Continuous individual anode 

currents can optimise alumina feeding strategies [5-13], detect early signs of process 

abnormalities [14-19], and improve cell operation strategies [20-22]. Aligning with the 

Industry 4.0 vision of using advanced sensors for digital automation, control, analytics, and 

flexible manufacturing, our team has developed sophisticated measurement systems that provide 

real-time data on individual anode currents. These data enable strategies that ensure the energy-

intensive smelting process remains adaptable and efficient, such as power modulation strategies 

to adjust electrical power usage in smelters in response to a variable power landscape driven by 

decarbonisation efforts and increased integration of intermittent solar energy [23-26]. This paper 

explores another application of continuous anode current measurement: using anode current 

profile of new anodes to determine if their vertical positions can be improved post-change. 

 

2. Anode Change and Vertical Position Increment 

 

The operation begins with crust breaking to release the anodes, during which the crust and anode 

cover material fall into the bath, introducing a thermal energy deficit and an excess of alumina. 

Next, the spent anode butt is removed, taking with it at least 50 kWh of stored energy. The 

replacement anode, typically at pot room temperature (far below the bath liquidus temperature), 

causes the surrounding bath to rapidly solidify. This solid phase, having a different composition 

from the liquid bath, alters the bath composition. Additionally, the solid phase impedes bath flow, 

slows mass transport, and introduces spatial variations. Furthermore, this freeze acts as an 

electrical insulator, blocking and redistributing anode current to other anodes. At least 160 kWh 

are needed to restore optimal cell conditions, including the dissolution of the freeze and heating 

the bath and new anodes to operating temperatures. Although preheating anodes can reduce these 

impacts, it is not commonly practiced due to higher energy costs [27]. 

 

Initially, the freeze completely covers the anode in contact with the bath, preventing current flow. 

Anode current gradually increases to its operating capacity as the freeze dissolves over hours or 

days, during which local heat generation and material consumption are relatively less than that of 

other anodes. Consequently, informed by positive experimental results [28, 29], smelters typically 

set the new anode at a greater vertical position than the old butt it replaces, ensuring the ACD of 

the new anode matches that of other anodes when it eventually draws the normal current load. 
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